J.C. Moore Online
Current events from a science perspective.

Aristotle’s Contribution to Science, Education, and Physics

Aristotle thought that Nature could best be understood by observation and reason – and that all  knowledge should be open to examination and subject to reason.

Science Education has shown a renewed interest in Aristotle’s works. (1) Today, theories in science are often based on abstract and mathematical models of the world.  Students sometimes use the theories and equations without understanding how they were developed, their limitations, or even what problems they address. The development of an idea from Aristotle to the present would make physics more interesting and understandable. (2)  Aristotle’s works are reconstructions from fragmentary notes. He had the most rudimentary of scientific equipment, his measurements were not quantitative; and he considered only things that were observable with the eye. Ignoring these limitations has caused some to distort the significance of his work, sometimes to the point of considering Aristotle an impediment to the advancement of science. However, we should not project the framework of contemporary science on Aristotle’s work – but we should read his works and examine his Natural Philosophy in the context of his times. (3)

Scientific Method: In ancient times, events in Nature had been explained as the actions of the gods. The early Greek philosophers  questioned the role of the gods as the cause of events and by the fifth century B.C. the Greek philosophers, such as Socrates, had separated philosophy from theology. But, if the gods were not the cause of events, what was? Philosophers advanced explanations based on philosophical principles and mathematical forms. Aristotle found that unsatisfactory. He decided the principles of nature could be found within nature and could be discovered using careful observation and inductive reasoning. Observations must be capable of being observed by the senses and should include the four causes: the composition, the shape (or form), the motion (or change), and the end result (or purpose). Identifying the four causes insured a thorough understanding of the event. Chance or spontaneity were not considered causes. He thought all things in Nature should be open to examination and subject to reason – and he set about applying his methods to all knowledge.

Aristotle founded a school in Athens at the Lyceum which provided the world’s first comprehensive study of human knowledge from the perspective of natural philosophy. His lectures followed a pattern that formed the basis of the scientific method. They included a statement of the idea or problem, the precise definition of terms, a statement of what he and other scholars thought about the matter, the observations, arguments based on how well the ideas agreed with observation, and finally what could be concluded. His lectures notes are important as they not only show clearly his reasoning but they preserve many of the ideas of his contemporaries. (4, 5)

Physics: In his work,  Physics, (6) Aristotle examined the nature of matter, space, time, and motion. He had few tools for experimentation and could not measure time or speeds. He would not allow invisible forces so his reasoning did not include gravity. Things fell to Earth and the moon circled the Earth because that was their nature. He proved that infinite linear motion and voids could not exist on Earth. Without those, he could not escape the complexities of the real world or fully understand inertia. In spite of his limitations, Aristotle made some remarkable contributions to physics and laid the groundwork for Galileo, Newton, and Einstein. He reasoned that infinite velocities could not exist, that time and movement are continuous and inseparable, and that time was even flowing, infinite, and the same everywhere at once. These are all true and a part of Einstein’s Theory of Relativity. Some consider that Aristotle’s greatest contribution to physics was his description of time.

Reading Aristotle reminds one of reading Einstein. He takes the simplest of observations and in it discovers fundamental truths. Force is a push or a pull. A horse can pull a cart and the cart pulls back on the horse and when the horse stops, the cart stops.  Rest, then is the natural state of matter and the mover is acted on by that which it moves. These ideas became part of Newton’s Laws. He observed that there was both static and kinetic friction that opposed motion by studying shiphaulers. A hundred men could pull a ship but one man could not. Furthermore, he observed that the power needed to keep the ship moving depended on the force required and the speed. That is like the definition of power used today and, incidentally, something that Newton got wrong.  Aristotle examined objects falling in fluids and realized friction existed there also. He found that the speed of objects increased as the weight of the object and decreased with the thickness of the fluid. This is now a part of  Stoke’s Law  for an object falling at its terminal velocity. He also considered what would happen if the fluid became thinner and thinner but rejected the conclusion as that would lead to a vacuum and an infinite speed, both which he considered impossibilities. Galileo allowed those impossibilities and is credited with discovering kinematics.

Cosmology: We sometimes forget that Aristotle proved the Earth was a sphere. He observed that the shadow of the Earth on the moon during an eclipse was an arc. That was not conclusive as a disk might give the same shadow. The phases of the Moon and its appearance during eclipses show it to be a sphere and the Earth might be also. As one walks toward the horizon, the horizon falls away; and, as one walks North or South, different stars appear. These are as if one is looking out from a sphere. All things made of Earth fall to Earth in such a way as to be as near the Earth as possible. A sphere is the shape that allows this as it is the shape with the smallest surface for a given volume. All things considered, the Earth must be a sphere. Interestingly, an extension of that last argument is used today to explain the erosion of mountains, surface tension, the shape of droplets, and why the moons, planets, and stars are spheres.

Aristotle concluded that since all things fall toward the center of the Earth or move round the Earth, that the Earth must be the center of the Universe. The Moon and planets move around the Earth in circular orbits but must move in circles within circles to explain the variance observed in their orbits. The stars are fixed spheres that rotate around the Earth and the Universe must be finite else the stars at the outer edge would have to move at infinite speed. Aristotle was aware that if the heavenly bodies were made of matter, that they would fly off like a rock from a sling. He therefore added to the elements a fifth element, aether, to compose the heavenly bodies. Aether could not be observed on Earth but objects composed of it could move forever in circles without friction or flying away. (7) Perhaps Aristotle should have stopped with the moon, but the planets and stars were there and needed explaining. In spite of his model’s imperfections, Aristotle gave us a universe whose laws are invariant and capable of being discovered by observation and understood by reason. Aristotle’s model of the Universe lasted almost 20 centuries without significant modification and was so compelling that Renaissance philosophers and theologians built it into church doctrine.

Scientific Revolution: However, Aristotle’s model did not fit well with new observations made by 15th century scientists. Copernicus realized that the planetary motions would be simpler and better explained if the Sun were the center of the universe. Tycho Brahe’s careful observations of planetary motions supported the Copernican model. Galileo used the first telescope to observe that Jupiter had moons that revolved around Jupiter and not the Earth. This was convincing evidence and Galileo championed a revision of Aristotle’s model. There was much resistance to the acceptance of the heliocentric model and Galileo was threatened with a charge of heresy for promoting the idea. Some people now consider Aristotle’s  ideas as an impediment to the advancement of science. However, the impediment was not Aristotle’s ideas – but that Aristotle’s model of the universe had become woven into the doctrine of the Church.

Galileo’s kinematics was also in conflict with Aristotle’s work. Galileo’s experiment with falling bodies is considered as one of the ten greatest experiments of all time. He showed that a small weight fell from the Tower of Pisa at the same rate as one ten times as heavy. This was considered by some to be a triumph of Galileo’s kinematics over the simple empiricism of Aristotle. That was not, however, the whole story. Aristotle had not only examined objects falling in air but also in liquids. He found that the rate of fall in liquids increased as the weight of the object and decreased with the thickness of the fluid. This idea is consistent with Stoke’s Law  for an object falling at its terminal velocity in fluids. Aristotle even had considered the case of a fluid with no thickness (a vacuum), but rejected the possibility since the speed would become infinite. However, Galileo’s experiment was performed in air and, while correct in a vacuum, Galileo’s mechanics were not exactly correct in air. Had Galileo dropped his objects from a much greater height, he would have found that the heavy object would reach the ground half again as fast as the small object. This is observable in hailstones where a large stone will strike the ground at almost twice the speed of a small stone. Galileo’s mechanics are only valid in a vacuum and even then would allow the velocity to eventually become infinite, which conflicts with Einstein’s relativity.  No one has thought to criticize Galileo for that.

Scientific Progress: Many thought, and still think, that Galileo’s work was the final overthrow of Aristotelian physics and the start of a revolution allowing science to advance. That is not the case. It is just the normal progress of science that models and theories are revised as better observations and understanding occur. The Revolution was not so much an overthrow of Aristotelian Physics as it was in moving from the observable to the imaginable – and in again separating science from theology and philosophy. It is ironic that Galileo was accused of heresy for questioning the theories of a man who thought everything should be open to question and reason.

(1)  ERIC. http://www.eric.ed.gov A search of the database shows 78 papers in the last three decades are about the use of Aristotle’s ideas in teaching.

(2)  Stinner, A. (1994). The Story of Force: from Aristotle to Einstein. Phys. Educ., 29, 77-85.

(3)  Lombardi, O. (1999). Aristotelian Physics in the Contest of Teaching Science: A Historical-Philosophical  Approach. Science and Education, 8, 217-239.

(4)  Durant, Will. The Story of Philosophy: The Lives and Opinions of the Great Philosophers of the Western  World. 5th ed. New York: Simon and Schuster, 1949

(5)  Ross, W. D. Aristotle. 5th ed. London: Methuen & Co. LTD. 1949

(6) Aristotle, Physics. Translated by R. P. Hardie and R. K. Gaye.
Provided by The Internet Classics Archive. Available at
    http://classics.mit.edu//Aristotle/physics.html
(7) Aristotle, On the Heavens. Translated by J. L. Stocks.
Provided by The Internet Classics Archive. Available at
    http://classics.mit.edu//Aristotle/heavens.html

Note: This article was originally written as the physical science
contribution to Aristotle's Enduring Contribution to Biology,
Physics,and Poetics by Surendra Singh, J.C. Moore, and Andrew Tadie.
It was published as Aristotle on Teaching Science  at the Seventh
International Conference on Teacher Education, New Delhi, India (2008)

The full article is available here.

(c) 2010 J.C. Moore

Tags: , , , , , , , , , , ,

25 Responses to “Aristotle’s Contribution to Science, Education, and Physics” »

  1. Carry Treml Says:

    I am constantly browsing online for tips that can help me. Thanks!

  2. david Says:

    This was very helpful, thank you very much :)

  3. Obi uche mirrian Says:

    This has solved my problem thank you

  4. Francisca Njoku Says:

    this has cleared the thought in my mind!

  5. magda Says:

    thank you for this great chance .i have question related to plato’s theory of education which is:
    what is the relationship between justice and individuals’ abilities.please i am waiting for the answer

  6. admin Says:

    I’ve read more on Aristotle. In his dialogue Republic, Plato argues “. Justice is a proper, harmonious relationship between the warring parts of the person or city. Hence Plato’s definition of justice is that justice is the having and doing of what is one’s own. A just man is a man in just the right place, doing his best and giving the precise equivalent of what he has received.”

  7. George Meikoki Says:

    thanks a lot.it has assisted me in my research.be blessed

  8. shalu Says:

    thanks a lot.it was very nice to read about aristotle especially about the science method and science revolutions.be blessed.

  9. shalu Says:

    i like to read about science method and science revolution.really it helped me so much

  10. MMC Says:

    Great Article!

    Always amazing to see intellectual midgets attacking Aristotle, like a flea trying to bring down Apollo.

  11. sam bray Says:

    it kinda helped but i wanna know about his atomic theory so i can get miss brazzfeild to stop ridng my ass if you know what i mean :P

  12. admin Says:

    It must be a trick question. Chemistry wasn’t well developed in the fifth century BC, and Aristotle believed the four elements were Earth, air, fire, and water. Matter was made of different compositions of the four and materials took their properties from the portion of each element that they contained.

  13. Colin Says:

    i really enjoyed reading it, it was very educative> Thanks for helping me out> God bless y’all

  14. sam Says:

    Could not understand what this guy actually did, until I read this article!

  15. mark Says:

    Hi,

    I find this premise to be very odd in deed. The biggest thing missing from aristotle’s method was evidence…or a test. This is why he was wrong about 95% of the time in the areas of chemistry and physics. The scientific revolution was basically the rejecting of his thoughts on matter, forces and the universe. He thought heavy objects fall faster, something a simple test would have shown untrue. He disagreed with democotius’s concept of the atom and insisted we are made of earth, wind, water and fire. He thought a great number of things that were extremely wrong and lead western civilization down the wrong path for 2000 years. I’m truly astonished that anyone would wish to bring back his wrong headed thinking that brought about such incorrect conclusions as well as lead to the belief that non whites and women are less than human.

    Just my thoughts

  16. admin Says:

    Aristotle thought that nature could best be understood by observation and reason and his work led to the development of the scientific method. He had very little scientific equipment, particularly a way of measuring mass and time, but he was a keen observer and he did do a number of experiments. One of those was observing the rate at which balls of different mass fell through fluids. He observed that heavy balls fell faster than light ones in water – and Galileo’s experiment was only approximately correct for balls falling through air because of the short distance they fell. If they had fallen far enough to reach terminal velocity, the larger ball would have fallen faster.

    Aristotle only accepted as real things that he could observe and for that reason he rejected the idea of a vacuum or of atoms. It was not definitely established whether matter was continuous or discrete until the work of Dalton in the 18th century. It’s hard to say, but I imagine he would have accepted the heliocentric theory and ideas of atoms if he had seen the evidence.

    Aristotle’s ideas were mostly lost to Western civilization until the 14th century when they were revived by the theologians in the Catholic Church. Many of his ideas were incorporated into church doctrine, and much of the opposition to scientific discoveries was in defense of church doctrine. The idea that the Earth was the center of the universe was quite appealing to the theologians of that day, and Galileo was threatened with excommunication for saying otherwise. It would seem that Aristotle could hardly be blamed for that.

    Aristotle’s attitudes about women and slaves probably reflected the Greek attitude in the fifth century BC, but I find no evidence that he considered them to be less than human. Certainly many of his ideas about science have been replaced as we gathered more evidence, but I think it is important that we remember that Aristotle was the one who developed the method that we use to understand the world. There is a more comprehensive article about Aristotle at http://jcmooreonline.com/aristotle-on-teaching-science/.

  17. www.dropletgroup.com Says:

    Thank you for your whole hard work on this site.
    Debby

    delights in going through

    internet research and it is easy to see why.
    We hear all of the lively medium you

    give insightful tricks through

    your web blog and as well as

    inspire

    participation from the others on the situation and my girl is

    certainly learning a great deal. Have fun with the
    remaining portion of the year. You are performing a powerful job.

  18. rodbeaver Says:

    Excellent post. Keep posting such kind of information on
    your blog. Im really impressed by it. I’ll definitely digg it and suggest to my friends. I’m confident
    they’ll be benefited from this site.

  19. Chinenye onyekachi Says:

    I love Aristotle as a philosopher and as a scientist.

  20. Buzzie Bee Says:

    I just want to marry Aristotle! his intellect is unfathomable and his great endeavours into science and philosophy have proved to be a great milestone for Western thinking! I bloody love you Aristotle!

  21. afry Says:

    aristotle is a great astronomer

  22. afry Says:

    can somebody help me? pls give me the most brief story about his life and his important contributions to science..

  23. admin Says:

    There is an article that provides more information at http://jcmooreonline.com/aristotle-on-teaching-science/.

  24. admin Says:

    He certainly was a great astronomer for his day and his model the universe stood for about 20 centuries before it was supplanted by the Heliocentric Theory. Aristotle was criticized because the church theologians in the 14th century liked having the Earth at the center of the universe and used Aristotle’s arguments. However, had Aristotle been alive then he would probably have accepted and contributed to the scientific evidence.

  25. Onatunde Says:

    Aristotle,the greatest philosopher.

Leave a Comment

Spam Protection by WP-SpamFree